291. 1,1-Disilyl-2-Alkenes: Preparation and Some Synthetic Applications

Preliminary communication1)

by Hansjürg Wetter

Laboratorium für Organische Chemie der Eidg. Technischen Hochschule, CH-8092 Zürich

(30.X.78)

Summary

Allyl sulfides and a selenide are metallated and silylated with chloro (pentamethyl)disilane. Treatment of the resulting disilanylmethyl sulfides 4 with trimethyloxonium tetrafluoroborate furnishes 1, 1-disilyl-2-alkenes 5 in good yields. Some synthetic possibilities of 5 are outlined.

The synthetic utility of allylsilanes 1 and vinylsilanes 2 has been amply demonstrated [1] (Scheme 1). Whereas there are convenient methods to prepare vinylsilanes²), routes to allylsilanes³) are mostly complicated and often leading to mixtures. We describe an easy way to convert allyl sulfides 3 and an allyl selenide via the corresponding disilanes 4 to substituted 1, 1-disilyl-2-alkenes 5. Based on the observation by *Kumada* of a facile disilane-disilylmethane rearrangement⁴) the

 Part of these results were presented at the Fall Meeting of the Swiss Chemical Society, October 20th, 1978.

²) From ketones [2a], from alkynes [2b].

³) For a general method using 2-(trimethylsilyl)ethylidene(triphenyl)phosphorane [3]; hydrosilylation of cyclopentadiene [4]; allylmagnesium compounds and chlorosilanes [5]; by cycloadditions [6].

⁴)
$$CH_{3O}$$
 $-s_{i}$ s_{i} s_{i} $-s_{i}$ s_{i} $-c_{i}$ [7].

approach of Scheme 2 was developed. Metallation of the allyl compounds 3 [8] with lithium diisopropylamide at -70° for 30 min and quenching the resulting lithium compounds with chloro (pentamethyl)disilane [9] at -70° leads in excellent yield to the disilanes 4 (*Table*). Whereas metallation and silylation of (*Z*)-sulfide 3c was not complete under the above standard conditions, only configurational pure (*Z*)-disilane 4c was isolated besides some starting material.

When the disilanes 4 were stirred at RT. with 2.5 to 3 equiv. of trimethyloxonium tetrafluoroborate [13] in CH_2Cl_2 rearranged 1-(dimethylfluorosilyl)-1-(trimethylsilyl)-2-alkenes 5 were isolated in good yields (*Table*). The rearrangement occurs with high configurational stability of the allylic double bond. When rearranged under the above standard conditions, (Z)-disilane 4c gave rise to the isolation of (Z)-5c contaminated by 7% of the (E)-isomer 5b. Fluorine coupling constants in ¹H- and ¹³C-NMR. of 5a-d are shown in *Scheme 3*. They are smaller than the coupling constants in fluoroalkanes.

Tubu							
Sulfides resp. Selenide ^{®)}		Dislanes	Yield ^{b)}		Disilylekenes	Yield ^{b)}	
, SPh	3a	sph s-s-	4a	93%	su- -su- șiF	5a	73%
Jacob SPh	ЗЬ	SPh si-	4b	96%	↓ - SI - Ši-F	5b	74%
SPh	3с	-şi-şi-sen	4c	70%	_\$1~\$1_F	5c°	86%
SPh SPh	3d	SPh Or \$1-\$1-	4d	90%			70%
O S SCH3	3e	SCH3	4e	91%		5d	93 %
Seph	3f	SePh Si-Si-	4f	87%			58%

Table

a) Prepared from the corresponding bromides and sodium benzenethiolate [10], sodium methanethiolate or sodium benzeneselenolate [11]; the bromides were prepared from allylic alcohols [12].

^b) Yield of chromatographed pure material; analytical samples were prepared by short path distillation only.

c) Mixture of 5c:5b 93:7 by capillary GC.

a) In parenthesis are the corresponding coupling constants in the all-carbon skeleton [14].

The synthetic potential of disilylalkenes 5 is indicated in Scheme 4. Acylation of 5a or 5d with benzoyl chloride/aluminium trichloride [4] [15] at -70° in CH₂Cl₂ yields the corresponding (*E*)-vinylsilanes 6a and 6d (76% and 61% respectively). Vinylsilane 6a was desilylated by hydrogen iodide in benzene [16] yielding 7 (75%). Treatment of 5b and 5d with 1.2 equiv. of methyllithium at -60° cleanly gave the bis(trimethylsilyl)alkenes 8b and 8d (91% and 97% respectively). Alternatively, when disilylalkene 5b was heated under reflux in THF. with 1.2 equiv. of furfural and a catalytic amount of tetrabutylammonium fluoride [17] the triene 9 was obtained in 50% yield as a mixture of (*E*)- and (*Z*)-isomers.

These few examples demonstrate the synthetic possibilities of the disilylalkenes 5, especially the easy accessibility to (E)-vinylsilanes 6, useful intermediates in organic synthesis [1].

REFERENCES

- E. W. Colvin, Chem. Soc. Rev. 7, 15 (1978); I. Fleming, Chemistry & Industry 1975, 449; P.F. Hudrlik, J. organometal. Chemistry Library 1, 127 (1976); T.-H. Chan, Accounts chem. Res. 10, 442 (1977).
- [2] a) W. E. Fristad, T. R. Bailey & L.A. Paquette, J. org. Chemistry 43, 1620 (1978); R.T. Taylor, C.R. Degenhardt, W. P. Melega & L.A. Paquette, Tetrahedron Letters 1977, 159; T. H. Chan, A. Baldassarre & D. Massuda, Synthesis 1976, 801; K. Sachdev, Tetrahedron Letters 1976, 4041; b) J. J. Eisch & G.A. Damasevitz, J. org. Chemistry 41, 2214 (1976); K. Uchida, K. Utimoto & H. Nozaki, J. org. Chemistry 41, 2215, 2941 (1976); R. Köster & L.A. Hagelee, Synthesis 1976, 118; K. Yamamoto, O. Nunokawa & J. Tsuji, Synthesis 1977, 721; H. Westmijze, J. Meijer & P. Vermeer, Tetrahedron Letters 1977, 1823; M. Obayashi, K. Utimoto & H. Nozaki, Tetrahedron Letters 1977, 1805.
- [3] D. Seyferth, K.R. Wursthorn & R.E. Mammarella, J. org. Chemistry 42, 3104 (1977).
- [4] I. Ojima, M. Kumagai & Y. Miyazawa, Tetrahedron Letters 1977, 1385.
- [5] J. Slutsky & H. Kwart, J. Amer. chem. Soc. 95, 8678 (1973); J.-P. Pillot, J. Dunoguès & R. Calas, Tetrahedron Letters 1976, 1871.
- [6] M.J. Carter & I. Fleming, Chem. Commun. 1976, 679; I. Fleming & A. Percival, Chem. Commun. 1976, 681; B.-W. Au-Yeung & I. Fleming, Chem. Commun. 1977, 79, 81.
- [7] K. Tamao & M. Kumada, J. organometal. Chemistry 30, 329 (1971).
- [8] J. F. Biellmann & J. B. Ducep, Tetrahedron Letters 1968, 5629; J. F. Biellmann & D. Schirlin, Synth. Commun. 8, 409 (1978).
- [9] M. Kumada, M. Yamaguchi, Y. Yamamoto, J.-I. Nakajima & K. Shiina, J. org. Chemistry 21, 1264 (1956); H. Sakurai, K. Tominaga, T. Watanabe & M. Kumada, Tetrahedron Letters 1966, 5493; M. Ishikawa, M. Kumada & H. Sakurai, J. organometal. Chemistry 23, 63 (1970).
- [10] C.D. Hurd & H. Greengard, J. Amer. chem. Soc. 52, 3356 (1930).
- [11] K. B. Sharpless & R. F. Lauer, J. Amer. chem. Soc. 95, 2697 (1973).
- [12] H.L. Simon, A. Kaufmann & H. Schinz, Helv. 29, 1133 (1946).
- [13] T.J. Curphey, Org. Syntheses 51, 142 (1971).
- [14] S.L. Stafford & J.D. Baldeschwieler, J. Amer. chem. Soc. 83, 4473 (1961); F.J. Weigert & J.D. Roberts, J. Amer. chem. Soc. 91, 4940 (1969).
- [15] I. Fleming & A. Pearce, Chem. Commun. 1975, 633.
- [16] K. Utimoto, M. Kitai & H. Nozaki, Tetrahedron Letters 1975, 2825.
- [17] A. Hosomi, A. Shirahata & H. Sakurai, Tetrahedron Letters 1978, 3043.

292. A New Method for the Construction of Macrolides. Stereoselective Synthesis of (\pm) -Phoracantholide J

Preliminary communication

by Martin Petrzilka

Département de Chimie Organique, Université de Genève, CH-1211 Genève 4

(6.XI.78)

Summary

Starting from 5-chloro-2-pentanone (1) the naturally occurring 10-membered lactone phoracantholide J (8a) has been synthesized as its racemate in a sequence of six steps (*Scheme 2*). Salient features of the synthesis include an internal selenium assisted acetal formation $(4 \rightarrow 5)$ and a stereoselective *Claisen* rearrangement $(6 \rightarrow 7 \rightarrow 8)$. This general synthetic strategy offers an alternative approach towards the construction of macrocyclic lactones.